research publications and other research outputs Sparse exploratory factor analysis

نویسندگان

  • Sara Fontanella
  • Nickolay Trendafilov
  • Kohei Adachi
چکیده

Sparse principal component analysis is a very active research area in the last decade. In the same time, there are very few works on sparse factor analysis. We propose a new contribution to the area by exploring a procedure for sparse factor analysis where the unknown parameters are found simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

’ s repository of research publications and other research outputs Sparse exploratory factor analysis

Sparse principal component analysis is a very active research area in the last decade. In the same time, there are very few works on sparse factor analysis. We propose a new contribution to the area by exploring a procedure for sparse factor analysis where the unknown parameters are found simultaneously.

متن کامل

The Open University ’ s repository of research publications and other research outputs Sparse exploratory factor analysis

Sparse principal component analysis is a very active research area in the last decade. In the same time, there are very few works on sparse factor analysis. We propose a new contribution to the area by exploring a procedure for sparse factor analysis where the unknown parameters are found simultaneously.

متن کامل

GFA: Exploratory Analysis of Multiple Data Sources with Group Factor Analysis

The R package GFA provides a full pipeline for factor analysis of multiple data sources that are represented as matrices with co-occurring samples. It allows learning dependencies between subsets of the data sources, decomposed into latent factors. The package also implements sparse priors for the factorization, providing interpretable biclusters of the multi-source data.

متن کامل

The Open University ’ s repository of research publications and other research outputs SVO triple based Latent Semantic Analysis for recognising textual entailment

Latent Semantic Analysis has only recently been applied to textual entailment recognition. However, these efforts have suffered from inadequate bag of words vector representations. Our prototype implementation for the Third Recognising Textual Entailment Challenge (RTE-3) improves the approach by applying it to vector representations that contain semi-structured representations of words. It use...

متن کامل

Sparse Exploratory Factor Analysis.

Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortuna...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016